

SEMICONDUCTOR TECHNICAL DATA

FC6261

Precision Power Distribution Switch

FEATURES

- Integrated Typical 60mΩ Power MOSFET
- Low Supply Current
- . 30μA Typical at Switch On State
- . 1μA Typical at Switch Off State
- Wide Input Voltage Range: 2.5V to 5.5V
- Fast Transient Response: 8μs
- . 0.1ms Typical Rise Time
- Reverse Current Flow Blocking
- Deglitched Open-Drain Over-Current Flag Output
- Output Discharge at shutdown(FC6261B1 only)
- . Thermal Shutdown Protection
- Hot Plug-In Application (Soft-Start)
- SOT-23-6/SOT-23-5 Package

APPLICATIONS

- USB Bus/Self Powered Hubs
- Battery-Charger Circuits
- Personal Communication Devices
- . Notebook Computers

GENERAL DESCRIPTION

The FC6261 series is a cost-effective, low voltage, single P-MOSFET load switch, optimized for self-powered and bus-powered Universal Serial Bus (USB) applications. This switch operates with inputs ranging from 2.4V to 5.5V, making it ideal for both 3V and 5V systems. The switch's low $R_{DS(ON)}$, $60m\Omega$, meets USB voltage drop requirements. A built-in P-channel MOSFET with true shutdown function to eliminate any reversed current flow across the switch when it is powered off. When the output voltage is higher than input voltage, the power switch is turned off by internal output reverse-voltage comparator.

nFLG is an open-drain output report over-current or over temperature event. In addition, nFLG also has typical 8ms deglitch timeout period and reports output reverse-voltage condition.

TYPICAL APPILCATION

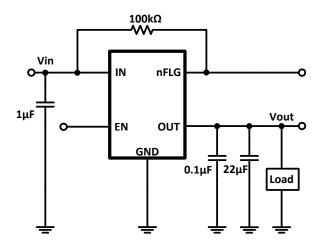


Figure 1. FC6261 Application Circuit

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Value	Unit
Input Supply Voltage	-0.3~7	V
EN Voltages	-0.3~V _{IN} +0.3	V
VOUT Voltage	-0.3~V _{IN} +0.3	V
Junction Temperature (Note2)	160	°C
Storage Temperature Range	-65~150	°C
Junction-to-ambient Thermal Resistance	220	°C/W
Junction-to-case(top) Thermal Resistance	62	°C/W
Lead Temperature (Soldering, 10s)	260	°C

PIN CONFIGURATION

Part Number	Package	Top mark	Quantity/ Reel
FC6261A	SOT-23-6	T14BXXX	3000
FC6261B	SOT-23-5	T15AXXX	3000
FC6261C	SOT-23-5	T16AXXX	3000
FC6261B1	SOT-23-5	T17EXXX	3000

FC6261A/FC6261B/FC6261C/FC6261B1 devices are Pb-free and RoHS compliant.

PIN FUNCTIONS

Р	in No.	Nome	Formation
FC6261A	FC6261B/C/B1	Name	Function
1	5	IN	Input Supply: Output MOSFET Drain, which also supplies IC's internal circuitry. Connect to positive supply.
2	2	GND	IC ground connection
3	4	EN	Enable: Logic level enable input. Do not floating. Make sure EN pin never floating. Pull high to enable IC.
4	3	nFLG	Over-Current: Open-Drain Fault Flag Output.
5		NC	
6	1	OUT	Switch Output: Output MOSFET Source of switch. Typically connect to switched side of load.

ESD RATINGS

Items	Description	Value	Unit
V_{ESD}	Human Body Model for all pins	±2000	V

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

Items	Description	Min	Max	Unit
Voltage Range	IN	2.5	5.5	V
TJ	Operating Junction Temperature Range	-40	125	°C

ELECTRICAL CHARACTERISTICS (Note 3)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
IN section			•	1		l.
V _{IN}	Input voltage		2.5		5.5	V
I _{IN_ON}	Supply current, Enable	V _{IN} =5.5V, No load on OUT		30	60	μΑ
I _{IN_OFF}	Shutdown current, Disable	V _{IN} =5.5V, No load on OUT		0.1	1	μΑ
I _{REV}	Reverse leakage current	V _{OUT} =5.5V, V _{IN} =0V		2	5	μΑ
V _{UVLO_ON}	Under voltage lockout exit	V _{IN} rising from 0-5V		2	2.3	V
$V_{\text{UVLO_HY}}$	UVLO Hysteresis			100		mV
EN section						
V _{EN_H}	High-level enable voltage	V _{IN} =5.5V	1.5			V
$V_{EN_{L}L}$	Low-level disable voltage	V _{IN} =2.5V			0.4	V
I _{EN}	EN input current	V _{EN} =5.5V or 0V	-0.5	5	10	μΑ
T _{ON}	Turn on time	CL=1μF, RL=100Ω		0.2		ms
T_{OFF}	Turn off time	CL=1μF, RL=100Ω		0.1		ms
OUT section	on					
		FC6261A V _{IN} =5V, V _{OUT} =3.5V	0.64	0.8	0.96	А
loc	Over Current CC Regulation	FC6261B and FC6261B1 V _{IN} =5V, V _{OUT} =3.5V	1.27	1.5	1.73	А
		FC6261C V _{IN} =5V, V _{OUT} =3.5V	1.95	2.1	2.25	А
V _{REVERSE}	Reverse voltage protection	V _{OUT} -V _{IN}	5	20	50	mV
T _{RISE}	Output rise time	CL=1μF, RL=100Ω		0.1		ms
T _{FALL}	Output fall time	CL=1μF, RL=100Ω		0.3		ms
T _{IOS}	Response time to short circuit			12		μs
R_{DIS}	OUT Discharge Resistance (FC6261B1 Only)	V _{IN} =5V, V _{EN} =0V, V _{OUT} =5V		42		Ω

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN}=5V, C_{IN}=1\mu F, C_{OUT}=1\mu F, T_A=25^{\circ}C.)$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
FLG(Fault fl	ag) section					
V _{OL}	Output low voltage	I _{FLG} =1mA			180	mV
I _{FLG}	Continuous FLG sink				10	mA
I _{FLG_LEAK}		Off-state leakage			1	μΑ
T_{FLG}	Fault flag deglitch	I _{OUT} = 0A to 2A, over current condition		8		ms
	time	VOUT-VIN>100mV, reverse blocking protection		2.5		ms
Power swit	ch					
R _{DS_ON}		I _{OUT} =0.5A(FC6261A) I _{OUT} =1A(FC6261B/C/B1)		60		mΩ
Thermal Sh	utdown					
T _{NORMAL}	Thermal shutdown temperature			150		°C
T _{NORMAL_HY}	Thermal shutdown threshold hysteresis			20		°C

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: T_J is calculated from the ambient temperature T_A and power dissipation PD according to the following formula: $T_J = T_A + P_D \times \theta_{JA}$.

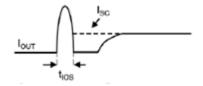


Figure 2. Short Circuits Response time

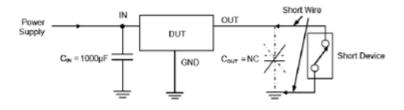


Figure 3. test circuits

Note:

To exactly identify the short circuit characteristic of IC, avoid the test result interfered by parasitic inductor, output capacitor, and contact resistor. It is necessary to follow the recommendation as follows.

- 1. Add $1000\mu F$ of capacitor between VIN and GND, and close to IC.
- 2. Remove output capacitor.
- 3. Shorter the short circuit device wire.

Revision No: 0

4. Measure output current (IOUT).

2021. 01. 11

FC6261

FUNCTIONAL BLOCK DIAGRAM

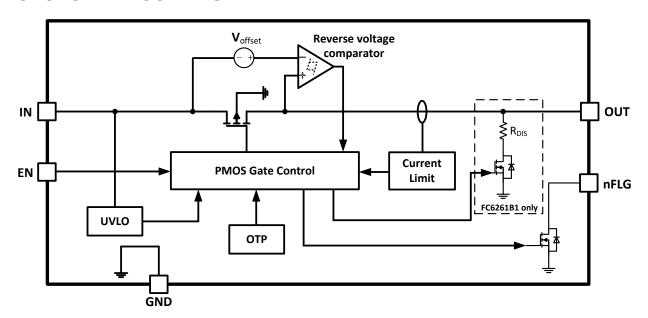
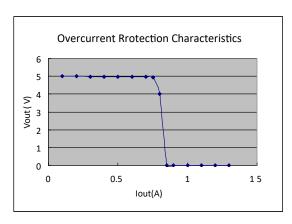
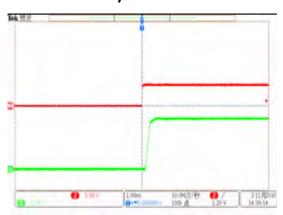


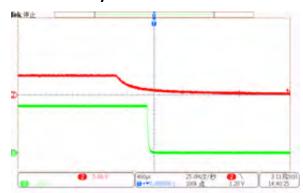
Figure 4. FC6261 Block Diagram


6/11

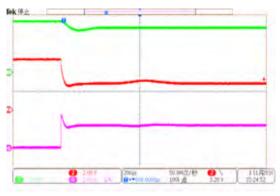

TYPICAL PERFORMANCE CHARACTERISTICS

FC6261A characteristic

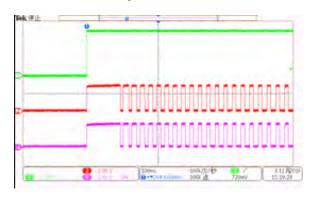
Over current Protection Characteristics



Turn on Delay Time and Rise Time


CH2:EN CH3:VOUT 1mS/div

Turn off Delay Time and Fall Time


CH2:EN CH3:VOUT 400uS/div

Resistance Load Inrush Response

CH2:VOUT CH3:VIN CH4:IOUT 200uS/div

Over current Response

CH2:VOUT CH3:EN CH4:IOUT 200uS/div

APPLICATION INFORMATION

The FC6261 Series is current-limited, power distribution switches using P-channel MOSFETs. Additional device shutdown features include over temperature protection and reverse-voltage protection. The driver controls the gate voltage of the power switch. The driver incorporates circuitry that controls the rise and fall times of the output voltage to limit large current and voltage surges and provides built-in soft-start functionality. The FC6261 Series enters constant current mode when the load exceeds the current-limit threshold.

Input and Output

IN (input) is the power supply connection to the logic circuitry and the drain of the output MOSFET. OUT (output) is the source of the output MOSFET. In a typical application, current flows through the switch from IN to OUT toward the load. OUT pin must be connected together to the load.

Soft Start for Hot Plug-In Applications

In order to eliminate the upstream voltage droop caused by the large inrush current during hot-plug events, the "soft-start" feature effectively isolates the power source from extremely large capacitive loads, satisfying the USB voltage droop requirements.

FLG Function

The nFLG open-drain output is asserted (active low) when an over current condition is encountered after a 8ms deglitch timeout. The nFLG output remains asserted until the over-current condition is removed. Over temperature condition is also reported by nFLG open-drain output. In addition, nFLG is also asserted (active low) in output reverse-voltage condition when the output reverse-voltage condition is removed.

Thermal Shutdown

The FC6261 Series has internal over temperature protection to shut down the device when its junction temperature exceeds 150°C with over load current condition, then after the device is disabled, if the junction temperature drops 20°C hysteresis typically the device will resume and restart to work. The switch continues to cycle off and on until the over current fault is removed.

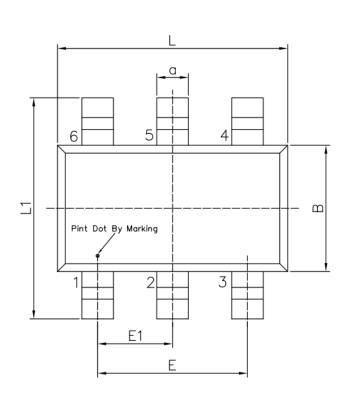
EN, the Enable Input

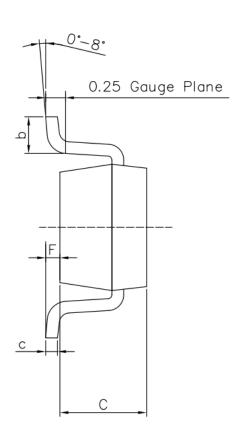
EN must be driven logic high or logic low for a clearly defined input. Floating the input may cause unpredictable operation, so please do not float EN input pin.

Output Auto Discharge

Only for FC6261B1, when its EN is disabled, an internal typical 42Ω resister is connected between OUT and GND to discharge output capacitor C_{OUT} .

Layout Consideration


For best performance of the FC6261 Series, the following guidelines must be strictly followed.

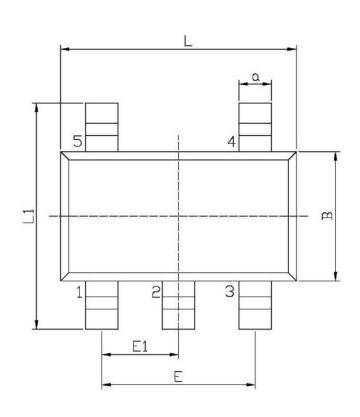

- 1) Input and output capacitors should be placed close to the IC and connected to ground plane to reduce noise coupling.
- 2) The GND should be connected to a strong ground plane for heat sink.
- 3) Keep the main current traces as possible as short and wide.

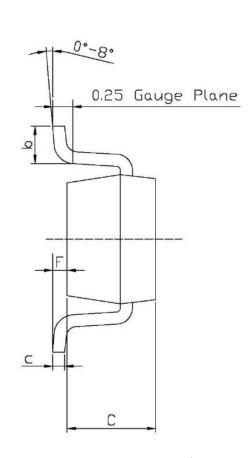
PACKAGE INFORMATION

SOT-23-6

Unit: mm

Cumb ol	Dimensions In Millimeters		Committee of	Dimensions In Millimeters		
Symbol	Min	Max	Symbol	Min	Max	
L	2.82	3.02	E1	0.85	1.05	
В	1.50	1.70	а	0.35	0.50	
С	0.90	1.30	С	0.10	0.20	
L1	2.60	3.00	b	0.35	0.55	
Е	1.80	2.00	F	0	0.15	


Note:


- 1) All dimensions are in millimeters.
- 2) Package length does not include mold flash, protrusion or gate burr.
- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.
- 5) Pin 1 is lower left pin when reading top mark from left to right.

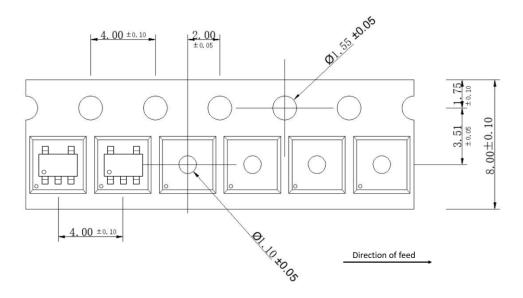
PACKAGE INFORMATION

SOT-23-5

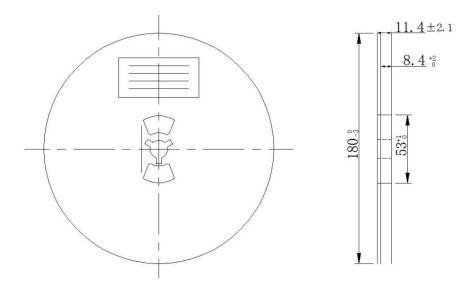
Unit: mm

Cumahal	Dimensions In Millimeters		Cumahad	Dimensions In Millimeters		
Symbol	Min	Max	Symbol	Min	Max	
L	2.82	3.02	E1	0.85	1.05	
В	1.50	1.70	а	0.35	0.50	
С	0.90	1.30	С	0.10	0.20	
L1	2.60	3.00	b	0.35	0.55	
E	1.80	2.00	F	0	0.15	

Note:


2021. 01. 11

- 1) All dimensions are in millimeters.
- 2) Package length does not include mold flash, protrusion or gate burr.
- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.
- 5) Pin 1 is lower left pin when reading top mark from left to right.



TAPE AND REEL INFORMATION

TAPE DIMENSIONS:

REEL DIMENSIONS:

Note:

2021. 01. 11

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 3000
- 3) MSL level is level 3.