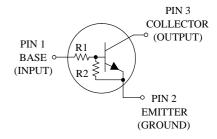

SEMICONDUCTOR TECHNICAL DATA


Bias Resistor Transistors

NPN Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

This new series of digital transistors is designed to replace a single device and its external resistor bias network. The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SC-89 package which is designed for low power surface mount applications.

- Simplifies Circuit Design
- · Reduces Board Space
- · Reduces Component Count
- The SC-89 package can be soldered using wave or reflow. The modified gull-winged leads absorb thermal stress during soldering eliminating the possibility of damage to the die.

MAXIMUM RATINGS ($T_A = 25$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current	I _C	100	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR-4 Board (Note 1.) @ TA = 25 C Derate above 25 C	PD	200 1.6	mW mW/ C
Thermal Resistance, Junction to Ambient (Note 1.)	RθJA	600	C/W
Total Device Dissipation, FR-4 Board (Note 2.) @ TA = 25 C Derate above 25 C	PD	300 2.4	mW mW/ C
Thermal Resistance, Junction to Ambient (Note 2.)	RθJA	400	C/W
Junction and Storage Temperature Range	TJ, Tstg	-55 to +150	С

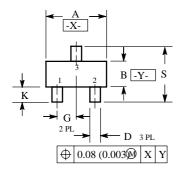
- 1. FR-4 @ Minimum Pad
- 2. FR-4 @ 1.0 × 1.0 Inch Pad

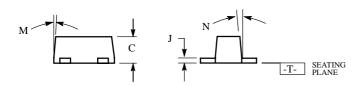
DEVICE MARKING AND ORDERING INFORMATION

Device	Marking	Shipping
DTC501T1G	8J	3000/Tape&Reel
DTC501T3G	8J	10000/Tape&Reel

DTC501

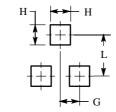
$\textbf{ELECTRICAL CHARACTERISTICS} \ \ (T_A = 25 \ \, C \, \, unless \, \, otherwise \, \, noted) \, (Continued)$


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Cutoff Current ($V_{CB} = 50 \text{ V}, I_E = 0$)	I _{CBO}	_		100	nAdc
Collector-Emitter Cutoff Current ($V_{CE} = 50 \text{ V}, I_B = 0$)	I _{CEO}	_	_	500	nAdc
Emitter-Base Cutoff Current $(V_{BE} = 6.0 \text{ V})$	I _{EBO}	_	_	1.5	mAdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu A, I_E = 0$)	V _{(BR)CBO}	50	_	-	Vdc
Collector-Emitter Breakdown Voltage (Note 3) $(I_C = 2.0 \text{ mA}, I_B = 0)$	V _{(BR)CEO}	50	_	_	Vdc
ON CHARACTERISTICS (Note 3)					
DC Current Gain $(V_{CE} = 10 \text{ V}, I_C = 5.0 \text{ mA})$	h _{FE}	15	30	_	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$)	V _{CE(sat)}	_	_	0.25	Vdc
Output Voltage (on) $(V_{CC} = 5.0 \text{ V}, V_B = 2.5 \text{ V}, R_L = 1.0 \text{ k}\Omega)$	V _{OL}	_	-	0.2	Vdc
Output Voltage (off) $(V_{CC} = 5.0 \text{ V}, V_{B} = 0.25 \text{ V}, R_{L} = 1.0 \text{ k}\Omega)$	V _{OH}	4.9	-	-	Vdc
Input Resistor	R ₁	3.3	4.7	6.1	kΩ
Resistor Ratio	R ₁ /R ₂	0.8	1.0	1.2	


^{3.} Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

Revision No: 0

SC-89



Revision No: 0

- NOTES:
 1 DIMENSIONING AND TOLERANCING PER ANSI Y14 5M, 1982
 2 CONTROLLING DIMENSION: MILLIMETERS
 3 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL
 4 463C-01 OBSOLETE, NEW STANDARD 463C-02

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	1 50	1 60	1 70	0 059	0 063	0 067
В	0 75	0 85	0 95	0 030	0 034	0 040
C	0 60	0 70	0 80	0 024	0 028	0 031
D	0 23	0 28	0 33	0 009	0 011	0 013
G	0 50BSC			0 020BSC		
Н	0 53RBF		0 021RBF			
J	0 10	0 15	0 20	0 004	0 006	0 008
K	0 30	0 40	0.50	0 012	0 016	0 020
L	1 10RBF			0 043RBF		
M	-	-	10°	-	-	10°
N	-	-	10°	-	-	10°
S	1 50	1 60	1 70	0 059	0 063	0 067

RECOMMENDED PATTERN OF SOLDER PADS