

# GLASS PASSIVATED CHIP SINGLE-PHASE BRIDGE RECTIFIER

Reverse Voltage - 50 to 1000 Volts Forward Current 6.0 Amperes

#### Features

- Thin Single In-Line package
- Ideal for printed circuit boards
- Glass passivated chip junction
- High surge current capability
- ♦ High case dielectric strength of 2500 V<sub>RMS</sub>
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0

### **Mechanical Data**

- Case: GBJ(5S) Epoxy meets UL-94V-0 Flammability rating
- Terminals: Plated leads solderable per MIL-STD-750, Method 2026
- ♦ High temperature soldering guaranteed: 260°C/10 seconds, 0.375 (9.5mm) lead length, 5lbs.(2.3kg) tension
- Polarity: As marked on body
- ◆ Mounting Torque: 10 cm-kg (8.8 inches-lbs) max.
- Recommended Torque: 5.7cm-kg (5 inches-lbs)

Boting at 2E°C ambient temporature uplace atherwise aposition

#### **Typical Applications**

General purpose use in ac-to-dc bridge full wave rectification for Switching Power Supply, Home Appliances, Office Equipment, Industrial Automation applications





Package outline dimensions in millimeters

## Maximum Ratings and Electrical Characteristics

| Rating at 25°C ambient temperature unless otherwise specified.                                           |                                      |                                          |       |       |       |       |       |       |                    |
|----------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|-------|-------|-------|-------|-------|-------|--------------------|
| Parameter                                                                                                | Symbols                              | GBJ6A                                    | GBJ6B | GBJ6D | GBJ6G | GBJ6J | GBJ6K | GBJ6M | Units              |
| Maximum repetitive peak reverse voltage                                                                  | V <sub>RRM</sub>                     | 50                                       | 100   | 200   | 400   | 600   | 800   | 1000  | Volts              |
| Maximum RMS voltage                                                                                      | V <sub>RMS</sub>                     | 35                                       | 70    | 140   | 280   | 420   | 560   | 700   | Volts              |
| Maximum DC blocking voltage                                                                              | V <sub>DC</sub>                      | 50                                       | 100   | 200   | 400   | 600   | 800   | 1000  | Volts              |
| Maximum average forward $T_c=100^{\circ}C$ rectified output current at $T_A=25^{\circ}C$                 | I <sub>F(AV)</sub>                   | 6.0 <sup>(1)</sup><br>2.8 <sup>(2)</sup> |       |       |       |       |       |       | Amps               |
| Peak forward surge current, 8.3ms single half sine-wave<br>superimposed on rated load (JEDEC Method)     | I <sub>fsm</sub>                     | 150.0                                    |       |       |       |       |       |       | Amps               |
| Rating for fusing (t<8.3ms)                                                                              | ۴t                                   | 93                                       |       |       |       |       |       |       | A <sup>2</sup> sec |
| Maximum instantaneous forward voltage drop per leg at 3.0A                                               | V <sub>F</sub>                       | 1.0                                      |       |       |       |       |       |       | Volt               |
| Maximum DC reverse current $T_{A}=25^{\circ}C$ at rated DC blocking voltage per leg $T_{A}=125^{\circ}C$ | I <sub>R</sub>                       | 5<br>250                                 |       |       |       |       |       |       | uA                 |
| Typical thermal resistance per leg                                                                       | R <sub>eJA</sub><br>R <sub>eJC</sub> | 22 <sup>(2)</sup><br>3.4 <sup>(1)</sup>  |       |       |       |       |       |       | ∘C/W               |
| Dielectric strength (Therm nals to case, AC 1 m nute)                                                    | V <sub>ISO</sub>                     | 2500                                     |       |       |       |       |       |       | Volts              |
| Operating junction and storage temperature range                                                         | T <sub>J</sub> , T <sub>stg</sub>    | -55 to +150                              |       |       |       |       |       |       | °C                 |

Notes 1. Unit case mounted on 9.5x9.5x0.15cm thick AI plate heatsink

2. Units mounted on P.C.B. with 0 5 x 0.5" (13 x 13 mm) copper pads and 0.375" (9.5 mm) lead length

3. Recommended mounting position is to bolt down on heatsink with silicone thermal compound for maximum heat transfer with #6 screw





#### **RATINGS AND CHARACTERISTIC CURVES**

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ 



Figure 1. Derating Curve Output Rectified Current



Figure 2. Maximum Non-Repetitive Peak Forward Surge Current Per Leg



Figure 5. Typical Junction Capacitance Per Leg



Figure 3. Typical Forward Characteristics Per Leg



Figure 4. Typical Reverse Characteristics Per Leg



Figure 6. Typical Transient Thermal Impedance

**First Silicon**