

Dual Transient Voltage Suppressors Array for ESD Protection

General Description

The FTV05CAS is a dual monolithic voltage suppressor designed to protect components which are connected to data and transmission lines against ESD. It clamps the voltage just above the logic level supply for positive transients, and to a diode drop below ground for negative transients. It can also work as bidirectional suppressor by connecting only pin1 and 2.

Applications

- Computers
- Printers
- Communication systems

Features

- 2 Unidirectional Transil functions
- Low leakage current: $I_R \max < 20 \ \mu$ A at V_{RM}
- 300W peak pulse power($8/20\mu$ s)
- Transient protection for data lines as per IEC61000-4-2(ESD) 15KV(air) 8KV(contact) IEC61000-4-5(Lightning) see I_{PPM} below

ORDERING INFORMATION

Device	Marking	Shipping		
FTV05CAS	05C	3000/Tape & Reel		

Absolute Ratings (T _{amb} =25°C)						
Symbol	Parameter	Value	Units			
P _{PP}	Peak Pulse Power (t _p = 8/20µs)	300	W			
TL	Maximum lead temperature for soldering during 10s	260	°C			
T _{stg}	Storage Temperature Range	-55 to +150	°C			
T _{op}	Operating Temperature Range	-40 to +125	°C			
Tj	Maximum junction temperature	150	°C			
V _{PP}	Electrostatic discharge IEC61000-4-2 air discharge IEC61000-4-2 contact discharge	15 8	kv			

First Silicon

Electrical Parameter

Symbol	Parameter			
V _{RM}	Stand-off voltage			
V_{BR}	Breakdown voltage			
V _{CL}	Clamping voltage			
I _{RM}	Leakage current			
I _{PPM}	Peak pulse current			

Electrical Characteristics

Part Numbers	Rated Stand-off Voltage	Maximum Leakage Current	Minimum Breakdown Voltage	Maxi Clarr Volt	mum nping tage	Maximum Pulse Peak Current	Maximum Capacitance
	. enage	@ V _{RM}	1mA	1A ¹⁾	5A ¹⁾	tp=8/20us	0v, 1MHz
	V _{RM}	I _{RM}	V _{BR}	V _{CL}		I _{PPM}	С
	V	μĄ	V	V	V	А	pF
FTV04CAS	4.0	20.0	5.0	8.5	10.5	17	300
FTV05CAS	5.0	5.0	6.0	9.8	12.5	17	220
FTV08CAS	8.0	5.0	8.5	13.4	15.0	15	190
FTV12CAS	12.0	1.0	13.3	19.0	28.0	12	90
FTV15CAS	15.0	1.0	16.7	24	39.0	10	60

1).8/20 waveform used. (see fig2.)

Typical Characteristics

Fig3.Power Derating

Application Note

Electrostatic discharge (ESD) is a major cause of failure in electronic systems. Transient Voltage Suppressors (TVS) are an ideal choice for ESD protection. They are capable of clamping the incoming transient to a low enough level such that damage to the protected semiconductor is prevented.

Surface mount TVS arrays offer the best choice for minimal lead inductance. They serve as parallel protection elements, connected between the signal line to ground. As the transient rises above the operating voltage of the device, the TVS array becomes a low impedance path diverting the transient current to ground. The FTV05CAS array is the ideal board evel protection of ESD sensitive semiconductor components.

The tiny SOT23 package allows design flexibility in the design of high density boards where the space saving is at a premium. This enables to shorten the routing and contributes to hardening againt ESD.

SOT-23

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M,1982
- 2. CONTROLLING DIMENSION: INCH.

ым	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	0.1102	0.1197	2.80	3.04	
В	0.0472	0.0551	1.20	1.40	
С	0.0350	0.0440	0.89	1.11	
D	0.0150	0.0200	0.37	0.50	
G	0.0701	0.0807	1.78	2.04	
н	0.0005	0.0040	0.013	0.100	
J	0.0034	0.0070	0.085	0.177	
к	0.0140	0.0285	0.35	0.69	
L	0.0350	0.0401	0.89	1.02	
S	0.0830	0.1039	2.10	2.64	
v	0.0177	0.0236	0.45	0.60	

First Silicon