

ESD Protection Diodes with Ultra–Low Capacitance

General Description

The FTV10BUL2 is designed to protect voltage sensitive components that require ultra-low from ESD and transient voltage events.

Excellent clamping capability, low capacitance, low leakage, and fast response time, rmake these parts ideal for ESD protection on designs where board space is at a premium. Because of its low capacitance, it is suited for use in high frequency designs such as USB 2.0 high speed and antenna line applications.

Specification Features:

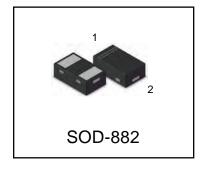
- Ultra Low Capacitance 1.5 pF
- Low Clamping Voltage
- Stand-off Voltage: 11 V
- Low Leakage
- Response Time is Typically < 1.0 ns
- IEC61000-4-2 Level 4 ESD Protection
- This is a Pb-Free Device

Mechanical Characteristics:

CASE: Void- free, transfer- molded, thermosetting plastic Epoxy Meets UL 94 V- 0 **LEAD FINISH:** 100% Matte Sn (Tin)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IEC 61000-4-2 (ESD) Contact Air		$\substack{\pm10\\\pm15}$	kV
Total Power Dissipation on FR-5 Board (Note 1) @ TA = 25°C	P _D	200	mW
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature Range	Τ _J	-55 to +150	°C
Lead Solder Temperatur e- Maximum (10 Second Duration)	Τ _L	260	°C

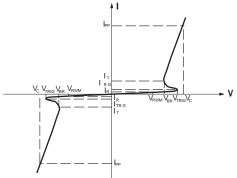

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied.

Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. $FR-5 = 1.0 \times 0.75 \times 0.62$ in.

First Silicon

ORDERING INFORMATION

Device	Marking	Shipping		
FTV10BLUL2	M1	10000/Tape&Reel		



ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Symbol	Parameter					
I _{PP}	Maximum Reverse Peak Pulse Current					
V _C	Clamping Voltage @ IPP					
VRWM	Reverse standoff voltage					
I _R	Maximum Reverse Leakage Current @ VRWM					
V _{BR}	Breakdown Voltage @ IT					
Ι _Τ	Test Current					
Vtrig	Reverse trigger voltage					
Itrig	Reverse trigger current					

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

		Vrwm (V)	IR(uA) @ Vrwm	VBR (V) @ IT (Note 2)	ŀŢ	C (pF)	V _C (V) @ IPP = 1.65 A (Note 3)	vc
Device	Device Marking	Max	Max	Min	mA	Max	Max	Per IEC61000-4-2 (Note 4)
FTV10BLUL2	M1	10	1.0	12	1.0	1.8	24.5	Figures 1 and 2 See Below

2. VBR is measured with a pulse test current IT at an ambient temperature of 25 $^\circ\!\!\!C$. 3. Surge current waveform per Figure 4.

4. For test procedure see Figures 3.

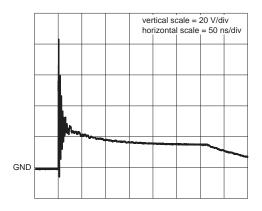


Figure 1. ESD Clamping Voltage Screenshot Positive 8 kV Contact per IEC61000-4-2

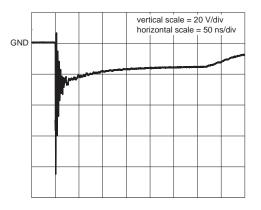
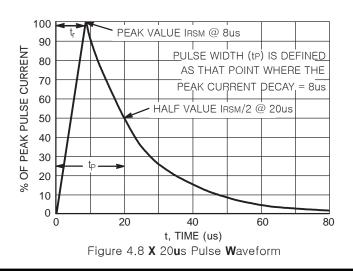


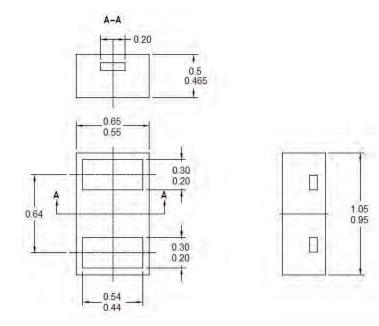
Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000-4-2

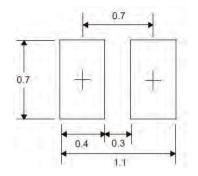


IEC 61000-4-2 Spec.

Level	Test V oltage (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

IEC61000-4-2 Waveform





SOD-882

DIMENSION OUTLINE:

Unit:mm

First Silicon